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The interaction of a fibre tangle with an airflow 

By PAUL A. TAUB 
Genera1 Applied Science Laboratories, Westbury, N.Y. 

(Received 9 December 1965 and in revised form 21 March 1966) 

An analytical model of the interaction of a fibre tangle with an airflow is proposed. 
This model replaces the discrete fibres by a continuum medium with a non-linear 
stress-strain law. The governing equations have been examined for one-dimen- 
sional unsteady flow configurations and have been found to possess five character- 
istic directions. 

A numerical-solution procedure, based upon the method of characteristics, has 
been outlined and applied to the flow within a dilation chamber. A fibre sample 
is located at the centre of the chamber, which is alternately pressurized and 
depressurized. 

1. Introduction 
A study of the opening of baled cotton by aerodynamic methods has led to a 

theoretical investigation of the interactions between fluid flows and fibre tangles. 
It is hoped thereby to find a gentler process than that presently used to separate 
the cotton tangles of baled cotton into individual fibres. The present study 
examines the opening effect on a fibre tangle of an aerodynamic interaction with 
a dilating airflow. 

In  a general sense, the theory presented here deals with the fluid flow through 
a type of porous, deformable, isotropic, solid medium. Little previous work has 
been published in this area; according to Paria (1963)) only two problems in 
‘isotropic poroviscoelasticity ’ (i.e. Biot 1955, 1956 and Paria 1958) have been 
solved, both of which deal with the somewhat remote circumstances associated 
with settlement in a loaded column of visco-elastic material. In  the problem at 
hand, the porous medium is visualized as a tangle of fibres, having a certain 
randomness and isotropy associated with its properties, and which undergoes 
deformation by first stressing the individual fibres and then, as the loads increase 
in tension, either by a slippage at crossings of fibres or by fibre breakage. One 
must consider an element of this material containing a large number of fibres 
and fibre crossings so that it is possible to replace the individual nature of the 
fibres by a continuum having the properties of a large tangle. In  the interest of 
simplicity, this continuum is assumed to be isotropic. In  some respects this 
medium is like an ordinary fluid; however, this continuum contains voids 
through which an actual fluid may flow and, at  a generic point, additional forces 
act which are due to the deformation of the tangle and the drag of the fluid flow- 
ing through the interstices of the tangle on the elements of that material. The 
interactions between the fluid and the porous medium are due to their relative 
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motion; the corresponding interaction force may be described by a modified 
form of Darcy’s law (see, for example, Streeter 1961). 

The forces developed within the fibre elements of the tangle are assumed to be 
a function of the strain and the inter-fibre friction. This, as yet, undetermined 
function should have the following properties. The upper limit of the stress is 
determined by the inter-fibre friction; the low-strain portion is determined by an 
elastic stress-strain relation; there is a smooth transition between elastic stress- 
strain behaviour and the plastic stress-strain behaviour exhibited when the 
maximum stress is reached; the compressive stress-strain behaviour is entirely 
elastic. The smooth behaviour of the stress-strain relation is plausible since, 
in the neighbourhood of a point within a tangle, not all fibres will be evenly 
loaded, some having tensions great enough to cause slippage at the interstices of 
the tangle and others, not as highly loaded, having the capability of straighten- 
ing and twisting or untwisting (i.e. storing energy elastically). A simple functional 
representation of the stress-strain behaviour of the fibre tangle will be chosen 
for the analysis. Due to a lack of experimental data, a t  this stage in the develop- 
ment of the theory, unknown constants appear in the formulation. 

The operation of a dilation chamber consists of alternately pressurizing and 
depressurizing a symmetric chamber by means of an electrically controlled 
solenoid valve. The fibre sample is placed at the centre of the chamber so that 
there is no tendency for the mass centre to move; then, the alternating, sym- 
metrical, dilation and contraction flows act on the sample to pull it apart or 
crush it. The possibility of slippage between fibres introduces a mechanism 
for gradually pulling apart the sample after repeated cycling of the chamber. 
A dilation chamber was fabricated as part of a related experimental pro- 
gramme; however, it  was operated prior to the present investigation and was 
not designed to give information useful for comparison with the analysis 
presented here. 

In  the next sections, the derivation of the equations of motion is sketched and 
the boundary relations at the edges of the fibre sample given. Following this, a 
discussion of the assumed stress-strain law is presented and the relation of the 
permeability and lithology factors in the modified Darcy law to the tangle pro- 
perties are derived. Then, a discussion of the solution to the equations by the 
method of characteristics will be presented, including the novel aspects of com- 
putation with five characteristics. Finally, the results of one series of calculations 
are given and discussed. 

2. Analysis-formulation 
Consider a sample of fibre tangle within the interstices of which air is entrapped. 

The proportion of solid matter in the sample is (1  -f), wherefis the porosity. The 
tangle may be thought of as a resistive medium in which the air flows, somewhat 
like a channel on whose surfaces a fluid friction force is acting. Resistance to the 
air flow represents a force on the solid dements of the tangle which may cause 
relative displacements of the fibres and, thus, bring inter-fibre forces into play. 
The conservation equations for the fluid component are written under the 
assumption of isotropy for the tangle properties. Also, it is assumed that the 
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viscous stresses act only on the fibre surfaces internal to the control volume, 
being negligible within the mass of the fluid itself. 

Conservation of jluid momentum 
a 

fPf [,t(Vf)+Vf.VVf] = -VfP+PV+f.*I, P a )  

where T is the viscous stress and acts only a t  the fibre surface, I is the unit 
dyadic, p is the fluid pressure, and pf and vf are the fluid density and velocity, 
respectively. In  the case of flow through a porous medium, however, the last 
term in the above equation can be replaced by the modified Darcy law: 

v, is the velocity of the fibre component of the tangle, K is the tangle permeability 
and t, is a lithology factor which extends the Darcy law validity for relative 
Reynolds numbers, pf d Ivf - v,l/p, above the slow-flow regime. Thus t;represents 
the inertial effects due to the tortuosity of the streamlines through the porous 
tangle; d and p are the fibre diameter and fluid viscosity, respectively. The 
second term on the right-hand side of equation (2a)  is the contribution of the 
pressure forces on the internal fluid-fibre boundaries to the momentum balance. 
For steady flow and small velocities, the momentum equation reduces to the 

The momentum equation may now be written as 

- K-'ruf"vf- v,) (1 +ru-l[, dPf Ivf- v,( 1; 

familiar form - VP = ,UfK-'(Vf-- V,). 

fpf[Bi(vf)+vf.vvf] a = -fVp-$Vf-vs) Pf l+@qvf-Vsl) .  (2%) 
( r u  

Conservation of jluid energy 

The energy equation is written for a fluid in which the viscous effects are negli- 
gible, except at the solid-fluid boundaries. Thus, 

-vs.(Vf-v,)- K l + = q v f - v s l ) ,  (3a) 
P 

where efo = ef + iv; is the total fluid energy. Introducing the perfect gas equation 
of state and using the mass and momentum conservation equations, the energy 
equation may be written as 

t The followng notation is being used: a, scalar quantities; a, vector quantities; 
a, dyadic tensor quantities. 
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Conservation of solid mass 

The fibre material is assumed to be incompressible; however, since the elements 
of the tangle may bend and twist, the tangle may compress or expand, thereby 
occupying more or less of an elemental volume. These changes are reflected in 
the behaviour off, which is 1 when no fibres are present in the elemental volume 
and 0 when no voids are present. Thus, the following mass conservation equation 
does not contain the fibre material density, ps: 

a 
at - ( l - f ) + V . [ ( l - f ) v s ]  = 0. (4) 

Conservation of solid momentum 

On the external surface of the control volume, the fibre component occupies 
the proportion (1  -f) of the surface. The control surface must necessarily cut 
through fibres, on whose cut surfaces fibre stresses act. It should be noted, 
however, that the internal stress within the fibres is in equilibrium with the 
hydrostatic pressure applied on the exposed surfaces of the fibres (i.e. those 
external surfaces of a fibre that are not in contact with another fibre) and 
the stress transmitted from fibre t o  fibre across the fibre contact areas. It is 
this latter portion of the fibre stress, due to inter-fibre forces and associated 
with bending and twisting of the fibres, which is directly responsible for tangle 
strains. 

In  the present model, the splitting of the internal fibre stress into hydrostatic 
and inter-fibre force components is justified by the isotropic nature of the stresses 
set up in the individual fibres by their immersion in the fluid and the relatively 
large elastic modulus of the fibre material; that is, the hydrostatic forces uni- 
formly crush the fibre material, which, however, undergoes insignificant de- 
formations that are not of the kind responsible for gross tangle strains, i.e. twist- 
ing and bending (although it is conceivable that, a t  sufficiently high hydrostatic 
pressure levels, the fibres will buckle, they ar0 generally twisted and bent in their 
natural state, being therefore quite resistant to such deformations. It should be 
noted that other porous deformable media whose elements are not fibres and 
whose material is much more compliant will not satisfy the assumptions of the 
present stress model). Since the hydrostatic portion of the fibre stress is a con- 
sequence of the fibre surfaces being exposed to fluid pressure, it follows that any 
reduction in exposed surface area, as, for example, by mutual fibre contact, 
would reduce that stress component. This hydrostatic stress in a given direction 
would, as usual, be given by the fluid pressure multiplied by the projection of the 
exposed surface area in that direction. In  the absence of any pertinent data, it  is 
convenient to assume that the reduction in exposed area for a fibre is linear in 
the number density of fibres of (1  - f) and that, therefore, for an isotropic tangle, 
the hydrostatic forces within the fibres a t  the surface of the control volume is 
given by p (  1 -f) [l - c( 1 -f)], where c is a constant which depends on the type 
of fibre in the tangle. 
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With the help of the solid mass conservation equation the momentum equation 
may be written as 

or, combining the first two terms of the right-hand side, 

The last term represents the fluid drag upon the tangle and is equal, but op- 
posite in direction, to the resistance encountered by the fluid. The a term is a 
stress tensor acting on the control surfaces due to deformations of the tangle and 
is a function of the porosity, the normal forces between fibres at  crossings within 
the tangle and the ability to store energy by deforming the individual fibres. 
This function will be dealt with at length in a following section. It should be noted 
that, in a dilation flow, no shear stress terms will appear in PY because of the 
symmetry of the geometry and of the forces. 

Conservation of solid energy 

Since the fibres are considered to be incapable of interchanging heat energy with 
the fluid and the thermodynamic state of the fibres is of no interest, there is no 
necessity for writing an energy equation; such an equation would not be in- 
dependent, but just the scalar product of the velocity vector, v,, with the just 
previously derived momentum equation. 

Stress-strain relation 

Consider the situation where one attempts to exert the maximum tension on a 
surface of the control volume. In  this case, the fibres passing through the surface 
would be under the maximum tension consistent with the onset of slippage be- 
tween the fibres in a tangle. It is assumed that this stress level is fixed by inter- 
fibre friction so that the maximum tensile stress is proportional to the number 
density of fibres, n,, the maximum force, F ,  required to withdraw a single fibre in 
contact with other fibres and a characteristic length, P, which is of the order of a 
fibre diameter. 

There is some disagreement about the dependence of the frictional force upon 
the normal force between fibres, N ,  and contact area, but for parallel fibres 
GrAlen & Olafsson (1947), DuBois (1959) and Postle, Ingham & Cox (1953) agree 

F = a+bN, on the form 

where a and b are functions of the average fibre diameter, variability and the 
surface friction coefficient. In  the present case, 3' is normal to the control surface 
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and N is the result of stress within the tangle. It seems reasonable to take N as 
being proportional to stress within the tangle, which, in turn, is the result of 
stressing the fibres a t  the control surfaces. N is therefore taken as being proport- 
ional to F ,  so that 

Since n, = p,(l -f)\m,, where p, is the density of the fibre material, m, is the 
average mass of a length of fibre contained within a control volume of unit 
dimensions, and one may combine all the unknown constants into a single 
quantity, a, which must be experimentally determined, it is possible to write 
the following expression for the maximum tensile stress, 6': 

F = a+beF-tF = a/( l -b%).  

9' = 2(1 -f)p,a, 

where 

When the strain is small, however, the tangle acts like an elastic material in 
which energy is stored by distorting the elements of the tangle, In  tension, as the 
stress increases, the tangle undergoes small adjustments in the form of slippages 
at fibre crossings until the loading reaches O', at which point slippage occurs with 
no further increase in loading. As stated in $1,  it  is supposed that the transition 
between these two behaviours (elastic-plastic) is a smooth one, so that in tension 
the interfibre forces are assumed to be given by O = O'erf lea, where a is the 
strain, k is an undetermined constant and erf denotes the error function. The 
error function has been picked because of the relative simplicity with which it 
satisfies the elastic-plastic transition requirement. At this time, there are no 
other grounds on which to base a choice. 

In  compression, the maximum loading would be the crushing load, and slippage 
between fibres would not be an important factor; energy would be stored in the 
tangle by bending or twisting of the fibres. It has been observed by the author 
that it requires much more force to permanently deform a wad of, for instance, 
surgical cotton by compressing it rather than by pulling it apart. Since it is not 
anticipated that such compressive loads will be generated in a dilation chamber 
(indeed, this would be self defeating), it will be supposed for present purposes 
that the tangle is linearly elastic in compression. Moreover, because bending and 
twisting are the modes of distorting the tangle under low tensile loads, it  is sup- 
posed that the stress-strain behaviour is continuous at the zero stress level. Also, 
it  is supposed that, when relaxing from a tensile load, a linear elastic, stress- 
strain behaviour is followed since slippage cannot be reversed and was assumed 
to account for the non-linearities in the stress-strain relation. (It is realized that 
for some fibres, such as wool, which may have much higher interfibre friction, 
slippage may occur a t  large strains where non-linear bending and twisting of 
fibres can be important.) A permanent set will be put into the tangle after a 
substantial tensile strain. Inclusion of other effects, such as a time-dependent 
recovery response in the stress-strain relation, cannot a t  this time be justified 
by any observations known to the author. 

The basic assumptions underlying the stress-strain relations are those of 
elastic behaviour of the individual fibres and the occurrence of irreversible slip 
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between elements of the tangle. The latter has been assumed, on the basis of 
personal observation and in the interest of simplicity, to be dependent only on 
the normal force between fibres (and, ultimately, on the stress level within the 
tangle) and not a function of the relative velocity between the fibres or subject to 
a stick-slip effect due to substantial differences in static and kinetic friction 
forces; this is in agreement with the experiments of Lord (1955a) and GrAlen & 
Olafsson (1947) on cotton and wool, although some man-made fibres are found 
to exhibit stick-slip behaviour. Hence, as illustrated in figure 1, 

B = 0’ erf ( k f c  - a*)) for c- a* > 0 and increasing, 
63 = 3kn-*iiY(a- a*) for a- a* < 0 or decreasing, (6) 

where a* is obtained from solution of the following algebraic equation whenever 
.cr starts to decrease: k( a - a, ) = in4 erf (k( c - a* )) . (7) 

W 

(stress) 
I 

FIGURE 1. Assumed stress-strain behaviour. 

The strain, c, may be related to the divergence rate of fibre tangle. Consider a 
moving element, always composed of the same fibres; then, using the solid mass 
conservation equation, 

where the subscript 0 denotes conditions at t = to along a solid (fibre) particle or 
world line in the flow of fibre and fluid. Thus, 

as V G =  -+-- VfE-Vf. (: 1:f:) df 

Because of the requirement of knowing a* , one must compute this quantity along 
the solid particle path through the point of interest. In  a characteristics method 
of solution, this is equivalent to having an additional, implicit, characteristic 
direction. 
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In the light of the above discussion, the conservation of momentum equation 
for the solid fraction, without shearing forces, may be written as 

PA1 -f) (v,) + v,. vv, = - - 2pc( 1 -f) Of- ( 1  -f) ( I  - c( 1 -f)) vp L" 1 [: I 
Permeability and lithoiogy factor 

The modified Darcy law (i.e. Tek-Darcy, cf. Streeter 1961) contains two co- 
efficients, K and t,, which are functions of the porous medium through which a 
fluid flows. Lord (1955 b )  has experimentally determined the permeability, K ,  for 
air flow through plugs of textile fibres as a function of the porosity and type of 
fibre in the sample. He found that the data were well represented by the 

( 9 a )  
expression 

where /3 = 1.391 for cotton and d is the effective fibre diameter based upon the 
specific surface, i.e. surface area per unit volume of fibre. It should be noted, 
however, that the maximum Reynolds number (based upon fibre diameter) in 
these experiments was about 0.1; for Reynolds numbers above this range the 
additional term in the modified Darcy law becomes of importance. In  the present 
instance, maximum Reynolds numbers of about 30 are anticipated, so that an 
estimate of the lithology factor is desirable. 

No universal dependence of the lithology factor, tf, upon the porosity charac- 
teristics has been found in the literature. However, there does exist a body of 
data for the pressure drop through woven grids a t  Reynolds numbers of present 
interest. Although the approximation of a tangle by a woven grid is not rigorous, 
it  is possible, by identifying the porosity with the ratio of open volume to total 
volume of a grid whose elements are circular cylinders, and the distance over 
which the pressure gradient acts with the fibre diameter divided by the solidity, 
to derive a pressure drop law with a low-order term in reasonable agreement with 
the results of Lord (1955 b)  and from which an expression for the lithology factor 
may be extracted. Following Elder (1959)) a simplified version of the experi- 
mental law found by Davis (1957) for the pressure drop through a grid is used. 
Rearranging this law and identifying it with the modified Darcy law, it is found 
that 

K = 0*903dzJc5/( 16( 1 -f)l), 

K = f2d2/[44( 1 -f2) (1 -f)], (9  b )  

e, = ( 1  - f y 3 s f 5 .  (10)  

By using (10) for I ,  along with ( 9 a )  for K ,  it  is supposed that the higher-order 
correction to the actuaJ slow-flow behaviour is, a t  least, approximately described. 

Edge conditions 

In many problems, including the one of interest, a t  the edge of the fibre sample, 
one can identify an interface separating the gas-fibre mixture and the surround- 
ing gas. In  the present approximation, this interface is a boundary which no 
fibres can cross. Considering a control volume which always contains the bound- 
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ary and has vanishing thickness in the direction normal to the boundary, one can 
write the conservation equations in the co-ordinate system moving with the 
boundary as ( 1 l a )  

( 1 l b )  

- 
~ f , C f n ,  = f1Pf1vfnl = m, 

%no + f i ~ o  = f l ( P f l  G n l  +PA, 

(lid, e )  
- 
Usfi = 0,  POP - f 1 )  = Pl (1  - f 1 )  - &ln - CPl(1 - f J 2 9  

where the velocities in these moving co-ordinates are denoted by a superscript - ) 
their components normal to the boundary surface are denoted by subscript n, and 
conditions inside and outside the gas-fibre mixture are denoted by subscripts 1 
and 0, respectively. It will be seen, subsequently, that the above conditions are 
analogous to the jump conditions across a shock wave in a single gas. Non-trivial 
solutions have been worked out only for the one-dimensional case and will be 
given in the following sections. 

One-dimensional unsteady $ow equations 

The governing equations derived in the previous sections will be applied to the 
description of the phenomena inside a symmetrical, one-dimensional, dilation 
chamber in which the fibre sample is located a t  the centre. There are no shearing 
terms present in this situation, so that the equations (1)-(5) reduce to: 
conservation of solid mass: 

af/at + v,(af/ar) - ( 1  -f) (az;/ar) = 0;  

(a/W (fPf) + vf(a/ar) ( f P f )  +fPf(avfPr)  = 0;  

( 1 2 )  

(13) 

P A 1 - f )  [(avs/at)+vs(avs/ar)I-PsC1,2(af/ar) + ( 1  - f )c ' (aP/ar)  = /4f2K-'(vf-vs)I, (14 )  

conservation of fluid mass: 

conservation of solid momentum: 

where 
a: =p , l [ (d&/a f ) -2c ( i - f )P] ,  = i - - C ( i - j ) )  I = i+efapfi'L-llwf-vv,l; 

fpf[(avf /at)  +vf(avf /ar)]  +f(ap/ar)  = - p f 2 ~ - ' ( v f - v v , ) I ;  

conservation of fluid momentum : 

( 1 5 )  
conservation of fluid energy: 

One-dimensional edge conditions 

Equations (1 1 )  reduce to: 
- 

Pf,Vf, = f l P f , v f I  = 

Pfo c;o +fiP)O = f l ( P f l  @;l + P A  



57 0 Paul A.  Taub 

where ;Lj = v - vs and subscripts 0 and 1 denote conditions just outside and inside 
the fibre boundary, respectively. The non-trivial solutions are derived in a fashion 
similar to that used for the ordinary gasdynamic equations. The resulting jump 
conditions are 

Pl/PO = 9(1-62)+9(1+62)(M$/fl)+9([(1-62)+(1+6z) (M$/f1)12 

- 4[( 1 + 8') (ME/f:) {1+ 26'( 1 - P)-' (1  -f,)} - 62])4, (18a) 
or 

po /p ,  = i l l+ S2( 1 -fl)]-l [1+ 62( 1 -fl) - szfi + (1  + 62) M?{ 1 + 262( 1 - 62)-1(1 -j,)} 
5 ([ 1 + 62(  1 -fl) - szfi + (1 -t- 6 2 )  M2,{ 1 + 262( 1 - 62)-1(1 -f1)}]2 

- 4f1[ 1 + a'( 1 -ti)] [ ( 1 + 6') M: - 62])*], ( 1 8 b) 

pr,/pfo = +[ 1 + 62(  1 - 62)--lH$]--1[ 1 + ( 1 + 52)  ( I  - P)-1  (H,2/fl) 

or (19a) 
+_ ([1+(1+62) (1-6')-' (M7g/f~)]2-4(1-62)-1(M7g/f~)[1+~2(1-S2)-1M$])9], 

pfo/pf, = J[l + 62( 1 - 62)-1MZ,]-l[ 1 + (1  + 82) (1 - P)-1  M: 
5 ([1+(1+6') (1-62)-1~~]2-4f~(l-~2)-1H~[1+6z(l-fl)] 

x [ 1 -I- 62( 1 - P)-1 M2,])%]. ( 1 9 b) 

In  each of the above equations, the positive square root sign gives the jump con- 
ditions provided NO or Ml is the relative Mach number, %$af, of the flow entering 
the boundary, while the negative sign gives the conditions when Mo or Ml is the 
relative Mach number of the flow leaving the boundary. 

The desired velocity ratio results are obtained by use of the mass conservation 
equation (17a) and either of equations (19a) or (19b). Thus, 

vfl/vf, = [fl x equation (19a)l-1 or vf,/vf, = [f,/equation (19b)l. (20a, b) 

Similarly, by using (1 7 d )  and either (18a) or (1  8 b), relations for 8, may be 
derived in terms of fl and conditions on one side or the other of the boundary. 

3. Characteristics solution 
Characteristic directions 

The one-dimensional unsteady flow equations developed in the previous section 
can be shown to possess five explicit characteristic directions. The details of find- 
ing the characteristic directions and the corresponding compatibility relations 
need not be reproduced here because of the rather routine nature of the manipula- 
tions; they are available in the appendix of Taub (1965). The characteristic 
directions are found to be the solutions of the following equation for drldt 

[(drldt)  - 91 {( - 4 + [ (dr /d t )  - %I2) (a? - [(drldt)  - VfI2) + (1 - f )  C'(Pf+/fP,) 
x [ (dr /d t )  - W f l  "dr /d t )  - 9 1  + (Y - 1) y-l[(drldt) -vsl)} = 0, (21) 

where c' = 1 - c( 1 - f). It is seen that there are five characteristic directions; one 
of these is immediately identified as the fluid trajectory while the others can be 
shown, for cases of interest, t o  be close to the usual fluid characteristics (i.e. 
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dr/dt = vf af) and the analogous elastic body characteristics (i.e. drldt = vf f a,). 
This result is not entirely unexpected since the interaction will be weak if the air 
is not too impeded. The fluid trajectory characteristic is found to be present in 
fluid flows when there is a means of entropy production, which, in this case, is 
due to  the resistance of the tangle to the fluid flow. 

Equation (21 )  may be solved numerically by means of a digital computer or 
by use of a tedious analytical procedure; however, one may take advantage of 
the closeness of the characteristic directions to that for fluids and elastic bodies 
(since ( 1  -f) c’(pf/fp,) < 1 in cases of interest) to derivea set of first-order estimates 
for the differences between these directions and the Characteristic directions. In  
order to do this, (21) is cast into the following form: 

Expanding this into powers of x = dr/dt and comparing this with a similar expan- 
sion of ( Z l ) ,  a set of non-linear equations may be derived which can be linearized 
by assuming that i < af and j < af or vf. The resulting equations for g ,  h, i, j are 

{ - (a, + g)2 + [x - (v, + h)I2} { (af + i)2 - [x - (vf +j)I2} = 0. (22) 

j= -h ,  

(2af) i + z(v,- vf) h+ (Za,) g = C ( I  -21, 
( 4vsaf) i + 2(v,“ - a,” + a; - v;) h + ( 4vf a,) g = c[2vf - d(v, + vf)], 
2af(v,“ - a:) i + 2[vf (w,” - a:) +.,(a; - w;)] h - 2as(a; - v;) g = S(v; - vsvfZ), 

1 (23) 
- 

where C = ( 1  -f) c’(pf/fps) a; and 2 = ( y  - l ) / y .  As long as C < a?, it can be shown 
that the corrections g, h, i, j are small. 

C ~ p a t i b ~ l i t ~  reiations 
Along each characteristic, a compatibility relation among differentials of the 
variables may be written in the form 

A d f  + Bdpf  + Cdp + Ddvf + Edv, = H’dt, (24 a )  
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Along a given characteristic, (24a)  may be changed into a difference 
equation by means of an appropriate approximation. In  the present study, the 
simple relations, df = f I r -  fI, dp, = pfII -p f I ,  etc. were used, where I and 11 
denote conditions at the initial and final points along a length of the character- 
istic curve. Identifying subscript 11 with a point ( r ,  t )  at which it is desired to 
find the solution, the equation may be rearranged to be 

A f I I  + BpfII + CpIz +DvfII + BusII = P'dt + Afz + BPfI + CPI + DvfI + EvSI; (24b) 

here dt is the time increment along the characteristic curve. 

'1  

f 
A r  

t--At,-l 
FIGURE 2. Characteristics at an interior point. 

Xolution procedure- interior point 

Because of the multiplicity of characteristic directions and their dependence 
upon the solution, the following iteration procedure is used. If one supposes that 
a t  a point all five characteristic directions are known, then a system of linear 
equations can be written for the dependent variables, with subscript II denoting 
conditions at  the common end-point of the characteristic curves passing through 
that point and with subscript I, ,  Ib ,  . . . , I, denoting conditions at the initial point 
of each characteristic, respectively. This is illustrated in figure 2, in which a grid 
in ( r ,  t )  is laid out with equal increments Ar, and with At chosen so that points 
Ia . . . Ie lie between points a and y. 

The solution is presumed known for all grid points along t = t ,  and it is desired 
to find the solution at point 11. In  order to start the calculation one must either 
estimate or guess at the solution so that the characteristic directions at point 11 
may be computed. A simple first estimate for the solution at (rl, tz)  is obtained 
by using the solution at ( r l ,  tl) (i.e. point p). Then characteristic curves may be 
constructed by going towards the previous time, t,, along a straight line whose 
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slope has the characteristic direction until it  passes through time t ,  at the point 
I,, Ib, . . ,  or I,. The values of the dependent variables at  these last-mentioned 
points are found by interpolation between their values at points a, p and y. 
When computing the values of the coefficients A , €3, . . . , P' the values of the depend- 
ent variables used are taken as the average between their values at I and II. 
Also, the average characteristic direction along the characteristic curve is used 
to find points I,. . . I,. 

When using the above procedure, the five equations of the same type as 
(25) result and are then solved as a set of linear equations for the dependent 
variables a t  point II. Then using the averaging technique, the calculation 
is repeated until the solution at  point II no longer changes. The iteration 
procedure has been found to converge, provided that the F'dt terms are not too 
large; the upper limit for dt is determined by the convergence requirement. 

Boundary 

I 

r 
FIGURE 3. Characteristics at the fibre boundary. 

Solution procedure-$bre boundary 

In the present analysis, the solution is discontinuous across the fibre boundary 
and its calculation requires special attention. The boundary point is treated as a 
dual point, each lying infinitesimal distances on either side of the discontinuity, 
with the jump conditions, equations (18)-(20)) specifying the relations between 
the solutions. The situation is that shown in figure 3. 

Outside the boundary, only fluid is found; therefore only the usual compress- 
ible fluid characteristics are applicable and at most two characteristics can inter- 
sect the boundary point II, from points outside the boundary. However one of 
these, namely the fluid particle paths, may lie within the fibre boundary and in 
this case would be counted among the characteristics approaching the boundary 
point II, from within the fibre boundary. It is possible for a maximum of three 
characteristics to pass through the boundary point ]Il .  One of these has just 
been mentioned, while of the other two characteristics, one has a direction close 
to vf& af and the other has direction close to v,? as. Thus, the characteristics 
passing through the boundary give rise to four compatibility relations in the 
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form of (24), while the jump conditions give three equations for the eight 
quantities fl, pfo, pf,, po, pl, vf,, vfl and vs1. The additional equation necessary to 
complete the formulation is obtained by use of the solid mass conservation 
equation a t  the boundary, viz. 

dfl/dt = (1 - f1)V. v,. (26) 

In  order to evaluate the divergence term, the net point just within the fibre 
boundary is used. Hence the dual boundary point and the adjacent net point are 
to be solved simultaneously. In  practice one first uses the solution a t  the previous 
time to evaluate V . v,, then solves the system of equations for the dual boundary 
point, computes the solution at the adjacent inside net point, re-estimates V . v, 
and then recomputes the boundary solution. Actual calculation shows that the 
boundary solution is almost unchanged by the re-estimation of V .v,. 

Application to $ow in dilation chamber 

In  a dilation chamber, the fibre sample is situated so that its axis of symmetry 
coincides with the axis of the chamber as shown in figure 4. Thus, by enforcing 
the symmetry conditions, vf = v, = 0, at  the axis, only half of the problem need 
be considered. Further, outside the fibre boundary, where only fluid is present, 
it is profitable to use ordinary compressible fluid characteristics methods for 
non-constant entropy flows. 

To high-pressure 
reservoir 

Synchronized 
valve 

To low-pressure 
reservoir 

FIGURE 4. Schematic diagram of a one-dimensional dilation chamber. 

At the ends of the chambers, valves will be present which, it is supposed, will 
alternately connect the chamber with two pressure reservoirs of infinite extent, 
and of high and low pressure, respectively. For the present analysis, it is assumed 
that the valves may be replaced by a condition which specifies the pressure at the 
end walls as a function of time, namely a square wave which attains one of two 
values depending upon which phase of the period a given time lies within. Since 
no fibres are present at the valves, the end-wall conditions are easily calculated 
from a specification of the pressure and two of the ordinary fluid characteristics, 
one of which is the fluid trajectory. 

At a given initial time, the state of the chamber and its conten6s are specified; 
in this instance, the chamber contents are a t  rest, the fluid pressure and density 
are uniform and the end-wall valve has just opened to the low-pressure reservoir 
with a pressure level lower than that within the chamber. The value of fibre 
oontact factor, c,  has arbitrarily been chosen to be l O W ,  reflecting the smallness 
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of the effect it describes. The constants in the stress-strain law, a and k,  were 
determined roughly from a simple experiment with weights applied to a suitable 
sample and the observation of strains; this gave values of 7-1  and 2 for a and k 
respectively. The fibre material density, ps, was taken to be 96.9 lb./ft.3 

4. Interaction histories 
The major features of the flow are illustrated by a wave diagram of the events 

of the early time period as shown in figure 5. After the valve opens, an air wave 
propagates inward from the end wall towards the fibre face and, upon impinge- 
ment, gives rise to two waves, namely a reflected expansion and a transmitted 

f 

I r 

FIGURE 5. Wave diagram for early time period. a, initial expansion wave fan; b, air 
expansion waves transmitted through fibre face; c ,  air expansion waves reflected from 
fibre face as expansion waves; d, fibre expansion waves; e, air expansion waves reflected 
at end walls as compression waves;f, air expansion waves reflected from axis of symmetry; 
g, valve open to low-pressure reservoir. 

expansion wave. The reflected air wave will propagate back out to the end wall, 
where the constant pressure condition will reflect it inward as a compression 
wave. The transmitted air wave will continue to propagate inward until the axis 
of symmetry is reached, where it may be said to reflect as an expansion wave 
which travels outward until it impinges upon the fibre boundary, where it gives 
rise to transmitted and reflected waves. It should be recognized that, because the 
sound speed associated with the elastic properties of the fibre tangle is generally 
much smaller than the sound speed in air, waves with propagation speeds 
approximately equal to the fibre tangle’s elastic sound speed will originate at 
every point along a wave propagating through the air contained within the tangle; 
these waves are termed fibre waves and are analogous to the waves produced in 
any elastic body which is subjected to a disturbance. After a few reflexions, it  
becomes impossible to trace the individual waves. Because of the stability 
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limitation on the permissable step size of the calculation and the cost of large 
blocks of time on an electronic computer, only a limited time period was covered 
in the calculations. 

l5  r 

Time x lo4 (see) 
FIGURE 6. Fibre boundary 

velocity history. 

1 1 3 4 5 6 7 8  
Time x 104 (sec) 

FIGURE 7 .  History of fibre 
boundary motion. 

The results of a series of calculations are shown in figures 6-1 1 , in which a fibre 
sample initially of 0.11 ft. length and 0.9 porosity interacts with the flow in a 
0.20 ft. dilation chamber. The chamber is at a pressure of 3.5 x lo3 lb./ft.2 with 
a fluid density of 3.96 x ~lugs / f t .~  when the end-wall valve is opened to a 
reservoir with a, pressure of 2-83 x lo3 1b./fk2. The solution curves shown in figures 
8-11 are separated by approximately equal time intervals of 0.72 x 10-4 see with 
the first curve in each figure corresponding to 0.34 x see after valve opening. 

Because of the viscous interaction taking place between air and fibres, the air 
waves are attenuated as they pass through the tangle. Thus, for example, the 
first expansion wave transmitted through the tangle may be so attenuated that 
its reflexion from the axis of symmetry, or its additional reflexion from the 
inside of the fibre boundary, will be negligible. The effects of reflexions from the 
end walls are especially evident in the behaviour of the fibre boundary velocity. As 
shown in figure 6, a slackening off of this velocity occurs a t  about 2.5 x 10-4 sec, 
which is approximately the time required for an expansion wave to travel 
from the valve a t  the end wall to the fibre sample face, reflect to the valve, where 
it reflects as a compression wave, and to return to the sample face. The similar 
dip in the fibre face velocity shown in figure 6 at about 6 x 10-4 see is the result 
of continued reflexions from the end wall and sample face of the compression 
waves responsible for the previous slackening off of the fibre boundary velocity. 
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FIGURE 8. History of fibre porosity distribution. 
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FIGURE 9. History of fibre velocity distribution. 
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FIGURE 10. History of velocity difference distribution. 
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FIGURE 11. History of fluid pressure distribution. 
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Also of interest is the formation of a region of reduced porosity, as shown in 
figure 8, at a short distance behind the fibre boundary, preceded and followed by 
sharp changes in that quantity. This behaviour is also mirrored in figure 9 by the 
distributions of v, and in figure 10 by the distributions of vf-vs. Although it is 
certainly not clear, one could attribute the early appearance of the plateaus in 
the v, and vf - us distributions to the reduction in the velocity gradients in the 
successive air expansion wavelets which make up the initial expansion fan travel- 
ling inward from the end wall as they meet with the reflexions of the previous 
wavelets from the fibre sample face. Thus, the successive waves transmitted into 
the sample are weaker and have less and less effect. An additional consideration 
stems from the fact that, once the fibres move, the interaction forces, which are 
dependent upon vf-v,, will be reduced, so that, although the waves should 
penetrate the sample more easily, they should have a smaller interaction. The 
situation is further aggravated by the arrival at the sample face of compression 
waves from the end wall (cf. figure 11). These waves penetrate into the sample, 
reducing the relative velocity, vf-vs, (cf. figure 10) in the outermost portions 
below the existing level deeper within the sample. With the interaction forces 
thus reduced the fibre velocity does not grow as fast in this region as it does in the 
interior; consequently, a region of almost constant us continues to form somewhat 
behind the face of the sample. The fibre velocity at the face is much greater than 
that at the interior points under discussion, so that, although some reduction in 
the difference between velocities at these locations occurs, there still remains a 
considerable fibre velocity gradient just below the fibre boundary. The porosity 
on either side of the v, plateau continues to increase while very little change in f 
occurs in this region, and, consequently, a depression in the porosity curves 
appears. Since the pressure waves lose their potency as they penetrate farther 
within the sample, and decrease in their initial strength at  the end wall as the 
chamber pressure approaches that of the reservoir, it is expected that the region 
of porosity depression will remain small. 

Other computations, for both smaller and similar size chambers and fibre 
samples, have. been performed (Taub 1965) ; however, the permeability relation 
utilized was that of ( 9 b )  multiplied by the solidity (i.e. ( 1 - f )  x equation 
( 9 b ) ) ,  so that for the present porosity level the permeability was about 
one-tenth the proper level. These calculations revealed that, instead of a 
depression, a porosity plateau formed at an equivalent distance below the sam- 
ple face. Since air waves do not penetrate a less permeable medium as well as 
they do a more permeable one, this behaviour is as expected. 

This paper derives from a report of the work done under contract with the U.S. 
Department of Agriculture and authorized by the Research and Marketing Act. 
This work was supervised by the Southern Utilization Research and Develop- 
ment Division. 
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